Personalized Dialogue Generation with Persona-Adaptive Attention

Qiushi Huang^{1,2}, Yu Zhang^{2*}, Tom Ko³, Xubo Liu¹, Bo Wu⁴, Wenwu Wang¹, H Tang^{1*}

¹ University of Surrey

² Southern University of Science and Technology

³ ByteDance AI Lab

⁴ MIT-IBM Watson AI Lab

{qiushi.huang,xubo.liu,w.wang,h.tang}@surrey.ac.uk,{yu.zhang.ust,tomkocse}@gmail.com, bo.wu@ibm.com

Code:https://github.com/hqsiswiliam/persona-adaptive-attention

--- AAAI 2023

2023. 12. 21 • ChongQing

Persona-based dialogue systems aim to generate consistent responses based on historical context and predefined persona.

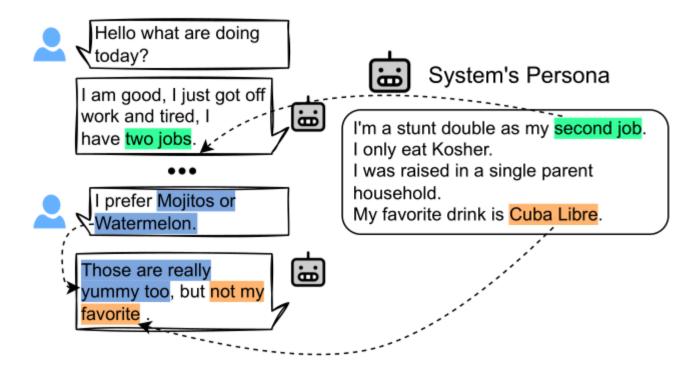


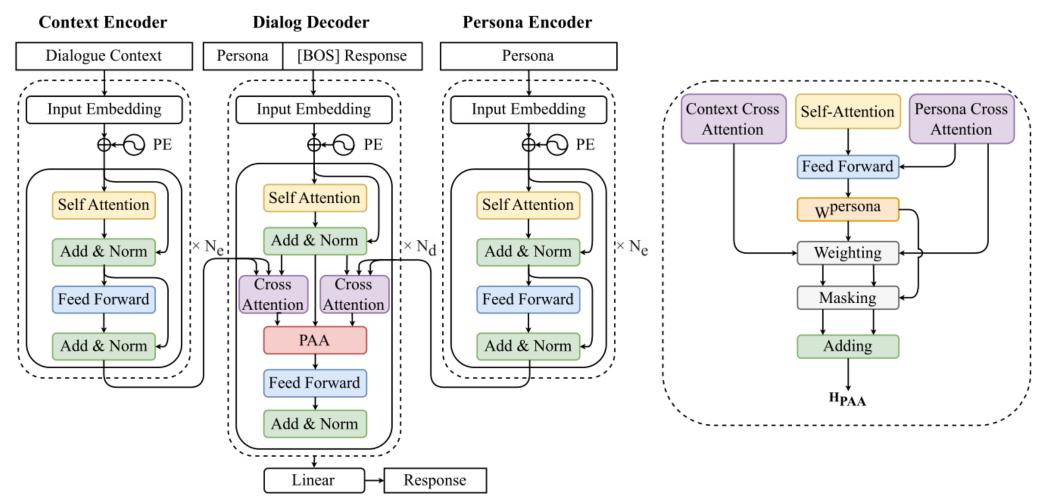
Figure 1: An example from the ConvAI2 dataset.

Motivation

(1): One challenge in persona-based dialogue generation is that the related datasets are usually small

(2): Another challenge is to choose the weights between the persona and context.

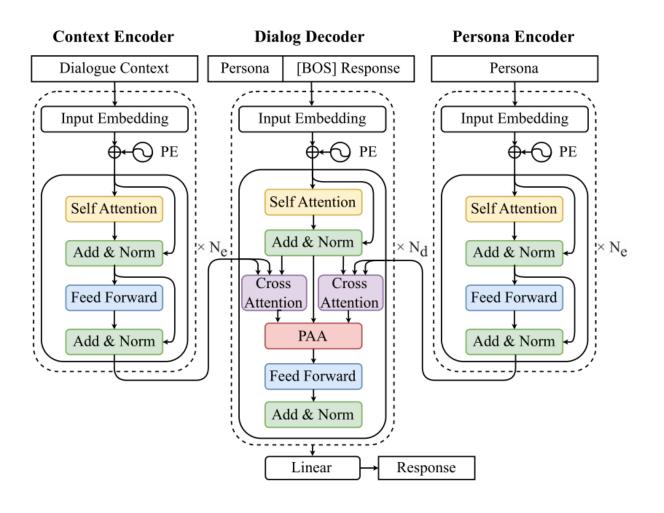
Overview



(a) The overview of our framework, PAA indicates the Persona-Adaptive Attention

(b) The architecture of Persona-Adaptive Attention, H_{PAA} is the module's output

Method



$$h_{P} = \text{Encoder}_{P}(I_{P}),$$

$$h_{U} = \text{Encoder}_{U}(I_{U}),$$

$$h_{R} = \text{Self-Attention}(I_{R}) + M_{R},$$

$$\hat{h}_{R} = \text{AddNorm}(h_{R}),$$

$$o_{P} = \text{Softmax}(\frac{Q_{r}K_{p}^{\top}}{\sqrt{d}})V_{p},$$

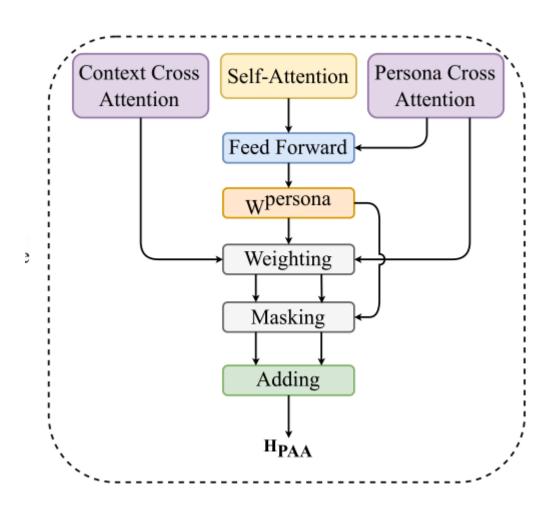
$$o_{U} = \text{Softmax}(\frac{Q_{r}K_{u}^{\top}}{\sqrt{d}})V_{u},$$

$$(1)$$

$$(2)$$

$$(3)$$

Method



$$m_p = FC([h_R; o_P]),$$

 $w_{persona} = \text{Sigmoid}(m_p).$ (4)

$$\tilde{o}_P = w_{persona} o_P,
\tilde{o}_U = (1 - w_{persona}) o_U.$$
(5)

$$m_{persona} = \mathbb{M}(w_{persona} > \tau),$$

$$m_{context} = \mathbb{M}(1 - w_{persona} > \tau).$$

$$\tau = |I_U|/(|I_U| + |I_P|),$$
(6)

$$\hat{o}_{P} = m_{persona} \odot \tilde{o}_{P},
\hat{o}_{U} = m_{context} \odot \tilde{o}_{U},
H_{PAA} = \hat{o}_{P} + \hat{o}_{U},$$
(7)

$$\mathcal{L}_{NLL} = -\log(p_{\theta}(I_R|I_P, I_U))$$

$$= -\sum_{i=1}^{|I_R|} \log(p_{\theta}(t_i^y|I_P, I_U, t_{< i}^y)),$$
(8)

Method	PARAMS	PPL ↓	F1 ↑	BLEU-1↑	BLEU-2↑	Dist-1↑	Dist-2↑
Encoder-GPT2	182M	20.06	11.95	16.78	1.69	0.11	0.23
GPT2-SMALL	124M	18.10	11.83	20.36	3.97	1.31	6.30
GPT2-MEDIUM	355M	17.65	11.45	18.06	3.58	1.13	6.07
GPT2-LARGE	774M	16.98	10.93	5.99	0.79	0.42	2.62
Attn-Routing	254M	17.94	12.77	18.74	2.80	0.70	2.39
PAA (Ours)	254M	14.03	17.36	20.50	4.17	1.31	5.21

Table 1: Automatic evaluation results on ConvAI2 dataset over our implemented approach. Boldface indicates the best result in terms of the corresponding metrics. Attn-Routing means the Attention-Routing mechanism, the implementation details are described in Appendix.

Method	PPL ⁵ ↓	Hits@1↑	F1 ↑
KVPM	-	54.8	14.25
DIM	-	78.8	-
LIC	-	17.3	17.79
TransferTransfo	17.51	82.1	19.09
P^2 Bot	15.12	81.9	19.77
BoB	7.80	-	-
GPT2-D3	15.69	-	-
PAA (Ours)	14.03	93.9	17.36

Table 2: Automatic evaluation results on ConvAI2 over published work.

Method	Flue. ↑	Info.↑	Rele. ↑	Per.C. ↑
E-GPT2	4.37	2.54	1.97	0.31
GPT2-M	4.15	3.70	3.10	0.43
PAA	4.80	4.54	3.69	0.70

Table 3: Human evaluation results on sampled decoding response. The fluency, informativeness, relevance, and persona consistency are abbreviated as "Flue.", "Info.", "Rele.", and "Per.C.". E-GPT2 represents the Encoder-GPT2, and GPT2-M means GPT2-MEDIUM.

Method	PPL ↓	F1 ↑
DirectSUM	23.15	11.37
PARAM	17.76	12.75
Dual	18.57	15.87
Skipped	14.73	17.30
Context	14.65	17.22
PAA	14.03	17.36

Table 4: The automatic evaluation results on PAA variants.

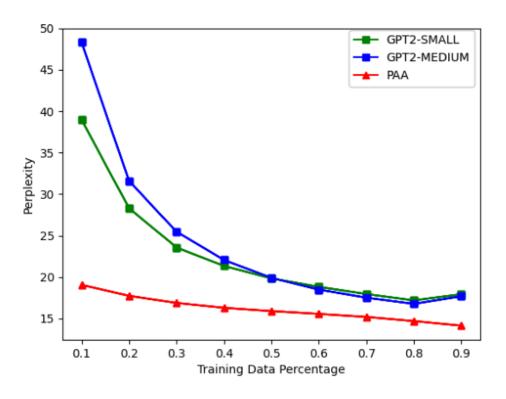


Figure 3: Comparison with GPT2 under low-resource scenario, we sampled 10% to 90% of training data to train GPT2-SMALL, GPT2-MEDIUM and PAA.

Method	PARAMS	PPL ↓	F1 ↑
Reddit 2.7B	2.7B	18.90	12.60
BlenderBot 1	2.7B	10.20	18.30
R2C2 BlenderBot	2.7B	10.50	20.50
OPT-175B	175B	10.80	18.50
PAA (Ours)	254M	14.03	17.36

Table 5: Automatic evaluation results on the ConvAI2 dataset over large pre-trained language models.

Thanks!